Pure 1 Test

Section A

- 1. Find, in the form y = mx + c, the equation of the line passing through the points (2, 5) and (5, -1)
- 2. Show that (x 2) is not a factor of $x^3 + 3x^2 4x 7$
- 3. Differentiate $4x^3 7x^2 + 9$
- 4. Make x the subject of the formula $a = \frac{3}{x} + b$
- 5. Find the coefficient of x^4 in the expansion of $(x + 3)^7$
- 6. Find the roots of the equation $2\cos\theta + 1 = 0$ for which $0^{\circ} < \theta < 360^{\circ}$
- 7. Find the area under the curve $y = 3x^2 + 4x 9$ between the lines x = 2 and x = 5
- 8. Find the range of values of *p* for which the equation $x^2 + 3x + p = 0$ has real roots
- 9. Find the equation of the circle with centre (2, 5) and passing through (4, 1)